Tetraphenyl-p-benziporphyrin: A Carbaporphyrinoid with Two Linked Carbon Atoms in the Coordination Core

Marcin Stȩpien and Lechosław Latos-Gražyński*
Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., Wrocław 50 383, Poland

Received December 21, 2001

Carbaporphyrinoids are porphyrin analogues that possess at least one CH unit replacing a pyrrolic nitrogen in the coordination core. This "internal carbon" atom normally belongs to a carbo- or heterocyclic ring substituting one of the pyrroles. ${ }^{1-6}$ It may participate in coordination of metal ions leading to stable organometallic complexes with often unusual properties. ${ }^{4}$
$5,10,15,20$-Tetraphenyl- p-benziporphyrin (1a) is a novel carbaporphyrinoid with a p-phenylene ring embedded in the tripyrrolic framework. 1 may be considered to have two adjacent CH units in the macrocyclic core. The coordinating properties of $\mathbf{1}$ are exemplified by a cadmium(II) complex.
$\mathbf{1}$ is an aromatic isomer of the nonaromatic 6,11,16,21-tetra-phenyl- m-benziporphyrin, ${ }^{5}$ related to hexaalkyl- m-benziporphyrin and its modifications including aromatic oxybenziporphyrin. ${ }^{6}$
$\mathbf{1}$ is obtained in a simple modification of the synthesis described for tetraphenyl- m-benziporphyrin (Scheme 1). ${ }^{5}$ After chromatographic workup compound $\mathbf{1}$ was obtained in 1% yield. ${ }^{7}$
$\mathbf{1 b}$ and the dication $\left(\mathbf{1 a}-\mathrm{H}_{2}\right) \mathrm{Cl}_{2}$ have been found to adopt similar conformations in the solid state (Figure 1). The macrocycle is planar (1b) or only slightly ruffled $\left(\mathbf{1} \mathbf{a}-\mathrm{H}_{2}{ }^{2+}\right)$ except for the tilt of the p-phenylene moiety. The dihedral angle between the six-membered ring and the N_{3} plane is almost invariant and equals 48° and 44° for the two independent molecules of $\mathbf{1 b}$, and 43° for $\mathbf{1 a}-\mathrm{H}_{2}{ }^{2+}$. The dication coordinates two chloride ions through hydrogen bonds. In the structures of $\mathbf{1 b}$ and $\mathbf{1 a}-\mathrm{H}_{2}{ }^{2+}$ the phenylene moiety displays a slight but statistically significant distortion from the idealized benzene geometry. The $\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(21)-\mathrm{C}(22)$ bond lengths vary in the range $1.365(2)-1.390(2) \AA$ and are systematically shorter than the remaining distances within the six-membered ring (1.394(2)-1.415(3) A). Along with the lengths of $\mathrm{C}(1)-\mathrm{C}(20)$ and $\mathrm{C}(4)-\mathrm{C}(5)$ bonds (1.454(3)-1.464(2) \AA), which are shorter than the respective distances in 22-acetoxy-m-benziporphyrin, ${ }^{5}$ they indicate that the phenylene is partly conjugated with the tripyrrolic brace.

At 168 K the phenylene protons $2,3-\mathrm{H}$ and $21,22-\mathrm{H}$ have strongly differentiated chemical shifts (7.68 and 2.32 ppm , respectively). They are a clear manifestation of the diatropic ring current, which deshields the external and shields the internal protons. At higher temperatures the two signals coalesce into a singlet due to a dynamic process. The molecule switches rapidly between two equivalent conformations, which differ by a flip of the p-phenylene (Scheme 2).

Activation parameters of this process determined for $\mathbf{1 c}$ are ΔH^{\ddagger} $=34.0(3) \mathrm{kJ} / \mathrm{mol}$ and $\Delta S^{\ddagger}=9.6(1.3) \mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$. Such conformational flexibility is not typical of regular porphyrins but was observed in certain porphyrin analogues. ${ }^{8}$

To account for the structural and spectroscopic characteristics of $\mathbf{1}$, it is necessary to include the quinoid canonical form III in

[^0]3838 ■ J. AM. CHEM. SOC. 2002, 124, 3838-3839

Figure 1. Crystal structures of $\mathbf{1 b}$ and $\left(\mathbf{1 a}-\mathrm{H}_{2}\right) \mathrm{Cl}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(50 \%$ thermal ellipsoids, one of two symmetry-independent molecules shown for 1b). Solvent molecules and hydrogen atoms (except for NH) are omitted for clarity.

Scheme 1. Synthesis

Scheme 2

Scheme 3

the description of p-benziporphyrin (Scheme 3). In conjunction with the Kekulé structures I and II it defines two 18e macrocyclic π-delocalization pathways \mathbf{B} and \mathbf{C}, which may coexist with the [6]annulene aromaticity of the benzene ring (A). While $\mathbf{1}$ is the first porphyrinoid to exhibit the delocalization pattern shown in Scheme 3 it was shown earlier that p-phenylene moieties, when

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$. Resonance assignments (obtained from COSY and NOESY maps) follow the numbering given in Scheme 1.

Figure 3. Structure of $\mathbf{2} \cdot 2 \mathrm{CDCl}_{3}$ (50% thermal ellipsoids; solvent molecules and hydrogen atoms omitted for clarity). Inset presents the geometry of interaction between cadmium(II) and p-phenylene.
incorporated into an annulenoid structure, can likewise participate in the overall delocalization. ${ }^{9}$ The simultaneous accessibility of local and macrocyclic aromaticity distinguishes $\mathbf{1}$ from the m-benziporphyrins with an isolated [6]annulene subsystem, ${ }^{5,6 a}$ and from oxybenziporphyrin, ${ }^{6 \mathrm{~b}}$ where macrocyclic aromaticity is achieved by transforming the benzene moiety into semiquinone.

1a reacts smoothly with CdCl_{2} yielding chlorocadmium(II) tetraphenyl-p-benziporphyrin (2a), wherein the macrocycle acts as a monoanionic ligand. Complexation constrains the conformational dynamics of the macrocycle, and the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$ taken at 298 K contains sharp p-phenylene signals $\left(\delta_{2,3}-\delta_{21,22}=6.57\right.$ ppm) with no signs of exchange (Figure 2). Coordination through the three nitrogen donors is confirmed by the presence of ${ }^{111 / 113} \mathrm{Cd}$ satellites seen for all the β-pyrrolic signals. In addition a weak scalar coupling (4.4 Hz) is observed between ${ }^{111 / 113} \mathrm{Cd}$ and protons $21,22-\mathrm{H}$, which results from spatial proximity between the cadmium ion and p-phenylene (the coupling is absent for $2,3-\mathrm{H}$).

The coordinating environment of $\mathrm{Cd}(\mathrm{II})$ forms a trigonal bipyramid, with the $\mathrm{N}(24)$ atom, chloride, and $\mathrm{C}(21)-\mathrm{C}(22)$ bond occupying the equatorial positions. $\mathrm{Cd}(\mathrm{II})$ is displaced by $0.524(1)$ \AA from the N_{3} plane (Figure 3).

The separation between cadmium and $\mathrm{C}(21)$ or $\mathrm{C}(22)$ (2.748(2) and $2.762(2) \AA$, respectively) is smaller than the expected van der Waals contact (ca. $3.1 \AA)^{10}$ but still larger than normally observed $\mathrm{Cd}-\mathrm{C}$ bond lengths $(2.10-2.35 \AA)^{11}$ and belongs to the class of intermediate-range interactions, ${ }^{12}$ whose existence was proved statistically for metal-arene complexes. ${ }^{13}$ The projection of the cadmium(II) ion onto the $\mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(21) \mathrm{C}(22)$ plane (C_{4} plane) lies close to the center of the $\mathrm{C}(21)-\mathrm{C}(22)$ bond, so the metal ion interacts with the benzene ring in a η^{2} fashion. To the best of our knowledge, this arrangement has no precedent in cadmium chemistry although is well-documented for $\mathrm{Hg}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I})$ arene complexes. ${ }^{14,15}$ The orientation of the phenylene ring in $\mathbf{2}$ is similar
as in the free base (the tilt angle is 45°). However the six-membered ring shows a slight boatlike deformation $(C(1)$ and $C(4)$ are displaced from the C_{4} plane by ca. $0.15 \AA$).

In conclusion, p-benziporphyrin, an isomer of m-benziporphyrin, ${ }^{5,6}$ is a new aromatic porphyrinoid, which preserves the essential features of the [18]porphyrin(1.1.1.1) frame and can coordinate metal ions using the $\left(\mathrm{C}_{n}, \mathrm{~N}, \mathrm{~N}, \mathrm{~N}\right)$ coordination core. The p-phenylene ring may be able to participate in various metal-arene bonding modes ranging from η^{2} to $\eta .{ }^{6}$

Acknowledgment. Financial support from the State Committee for Scientific Research KBN of Poland (Grant 4 T09A 147 22) and the Foundation for Polish Science is kindly acknowledged.

Supporting Information Available: Synthetic procedures, UVvis spectra, NMR data (including a ${ }^{1} \mathrm{H}-{ }^{113} \mathrm{Cd} 1 \mathrm{D}$ HMQC spectrum of 2a) (PDF) and crystallographic data for $\mathbf{1 b},\left(\mathbf{1 a}-\mathrm{H}_{2}\right) \mathrm{Cl}_{2}$, and 2 (CIF). This material is available free of charge via the Internet at http:// pubs.acs.org.

References

(1) (a) Chmielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K.; Głowiak, T. Angew. Chem., Int. Ed. Engl. 1994, 33, 779. (b) Furuta, H.; Asano, T.; Ogawa, T. J. Am. Chem. Soc. 1994, 116, 767.
(2) (a) Lash, T. D. Syntheses of Novel Porphyrinoid Chromophores. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 2, p 125. (b) Latos-Grażyński, L. Core Modified Heteroanalogues of Porphyrins and Metalloporphyrins. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 2, p 361.
(3) (a) Lash, T. D.; Romanic, J. L.; Hayes, M. J.; Spence, J. D. Chem. Commun. 1999, 819. (b) Furuta, H.; Maeda, H.; Osuka, A.; Yasutake, M.; Shinmyozu, T.; Ishikawa Y. Chem. Commun. 2000, 1143.
(4) (a) Chmielewski, P. J.; Latos-Grażyński, L.; Głowiak, T. J. Am. Chem. Soc. 1996, 118, 5690. (b) Chmielewski, P. J.; Latos-Grażyński, L.; Schmidt, I. Inorg. Chem. 2000, 39, 5475. (c) Furuta, H.; Ogawa, T.; Uwatoko, Y.; Araki, K. Inorg. Chem. 1999, 38, 2676. (d) Furuta, H.; Maeda, H.; Osuka, A.; Yasutake, M.; Shinmyozu, T.; Ishikawa, Y. Chem. Commun. 2000, 1143. (e) Chen, W.-C.; Hung, C.-H. Inorg. Chem. 2001, 40, 5070. (f) Stȩpień, M.; Latos-Grażyński, L.; Lash, T. D.; Szterenberg, L. Inorg. Chem. 2001, 40, 6892.
(5) Stȩpień, M.; Latos-Grażyński, L. Chem. Eur. J. 2001, 7, 5113.
(6) (a) Berlin, K.; Breitmaier, E. Angew. Chem., Int. Ed. Engl. 1994, 33, 1246. (b) Lash, T. D. Angew. Chem., Int. Ed. Engl. 1995, 34, 2433. (c) Richter, D. T.; Lash, T. D. Tetrahedron 2001, 57, 3657.
(7) In view of the straightforward availability of 1,4-bis(phenyl-hydroxymethyl)benzene the reported yield is practicable.
(8) Pacholska, E.; Latos-Grażyński, L.; Ciunik, Z. Angew. Chem., Int. Ed. Engl. 2001, 40, 4466. Sprutta, N.; Latos-Grażyński, L.; Org. Lett. 2001, 3, 1933 and references therein.
(9) Müllen, K.; Unterberg, H.; Huber, W.; Wennerström, O.; Norinder, U.; Tanner, D.; Thulin. B. J. Am. Chem. Soc. 1986, 106, 7514.
(10) Bondi, A. J. Phys. Chem. 1964, 68, 441.
(11) Hursthouse, M. B.; Motevalli, M.; O’Brien, P.; Walsh, J. R.; Jones, A. C. Organometallics 1991, 10, 3196. Smeets, W. J. J.; Spek, A. L.; Fischer, B.; van Migr, G. P. M.; Boersma, J. Acta Crystallogr. Sect. C 1987, 43, 893.
(12) The shortest nonbonding distance between cadmium and arene reported so far was a $2.7 \AA \eta^{1}$ contact found in $\mathrm{Cd}\left(\mathrm{O}-2.6-\mathrm{Ph}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2}$. Darensbourg, D. J.; Niezgoda, S. A.; Draper, J. D.; Reibenspies, J. H. J. Am. Chem. Soc. 1998, 120, 4690.
(13) Macal, M.; Kerdelhué, J.-L.; Blake, A. J.; Coke, P. A.; Motimer, R. J.; Teat, S. J. Eur. J. Inorg. Chem. 2000, 485.
(14) (a) Lau, W.; Kochi, J. K. J. Org. Chem. 1986, 51, 1801. (b) Borovik, S. A.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 2001, 123, 11219. (c) Munakata, M.; Wu, L. P.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.; Ning, G. L.; Kojima, T. J. Am. Chem. Soc. 1998, 120, 8610 and references therein.
(15) Weak binding of arenes to iron(III) porphyrin cations has recently been established to have a covalent component. Evans, D. R.; Fackler, N. L. P.; Xie, Z.; Rickard, C. E. F.; Boyd, P. D. W.; Reed, C. A. J. Am. Chem. Soc. 1999, 121, 8466.

JA017852Z

[^0]: * Corresponding author. E-mail: llg@wchuwr.chem.uni.wroc.pl.

